Midterm Exam I - Review MATH 125 - Spring 2022

Sections 2.1-2.5, 2.7, 2.8, 3.1-3.3, 3.7, 3.8

Midterm Exam 1: Tuesday 3/1, 5:50-7:50 pm in Strong 330 and Wescoe 3140
The following is a list of important concepts that will be tested on Midterm Exam 1. This is not a complete list of the material that you should know for the course, but it is a good indication of what will be emphasized on the exam. A thorough understanding of all of the following concepts will help you perform well on the exam. Some places to find problems on these topics are the following: in the book, in the slides, in the homework, on quizzes, and WebAssign.

- Average and Instantaneous Rates of Change

Total change	Average change	Instantaneous change
Total change of $f(x)$ on $[a, a+h]$	Average rate of change of $f(x)$ on $[a, a+h]$	Instantaneous rate of change of $f(x)$ at a
Change in y	Difference Quotient	Derivative
$f(a+h)-f(a)$	$\frac{f(a+h)-f(a)}{h}$	$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Change in Position	Average Velocity	(Instantaneous) Velocity
	Slope of secant line	Slope of tangent line

1. A ball is thrown into the air. The height (in feet) of the ball at a time t (in seconds) is given by

$$
p(t)=-16 t^{2}+10 t+7
$$

(a) Find the average velocity of the ball between times $t=1$ and $t=2$.
(b) Find the average velocity of the ball between times $t=1$ and $t=h$.
(c) Find the velocity of the ball at time $t=1$.
(a) $\frac{p(2)-p(1)}{2-1}=\frac{-37-1}{1}=-38 \mathrm{ft} / \mathrm{s}$
(b) $\frac{p(h)-p(1)}{h-1}=\frac{-16 h^{2}+10 h+6}{h-1} f t / s$
$v(1)=s^{\prime}(1)=\lim _{x \rightarrow 1} \frac{p(x)-p(1)}{h-1} \quad=\lim _{x \rightarrow 1} \frac{-16 x^{2}+10 x+6}{x-1}$
$=\lim _{x \rightarrow 1} \frac{-2(x-1)(8 x+3)}{x-1}=-2(8+3)=-22 f t / s$

Alternatively, by derivative rules $v(t)=-32 t+10$ and $v(1)=22 \mathrm{ft} / \mathrm{sec}$
2. Find the secant line to the function $f(x)=x^{3}-1$ on the interval $[-2,3]$.

Two points $(-2, f(-2))=(-2,-9)$ and $(3, f(3))=(3,26)$.
Slope: $\frac{f(3)-f(-2)}{3-(-2)}=\frac{26--(-9)}{5}=\frac{35}{5}=7$
Secant line: $y-(-9)=7(x-(-2)) \Longrightarrow y=7 x+5$

- Limits of Functions

- Understand the definitions of limit; this includes limits from the left, limits from the right, and infinite limits.
- Find vertical asymptotes for functions.
- Sketch a function satisfying a list of limit properties.
- Compute limits of various functions, including limits from the left and right both graphically and algebraically. Use the limit laws and limit calculation techniques: direct substitution, simplification, conjugation, and the Squeeze Theorem.
- Compute limits of piecewise defined functions using limits from the left and right.
- Compute limits at $\pm \infty$. Keep in mind the idea of multiplying through by 1 over the dominant term in the denominator. Find horizontal asymptotes using limits as $x \rightarrow \infty$ and $x \rightarrow-\infty$.

1. Compute the following limits if they exist. If the limit is infinite, specify if it is $\infty,-\infty$, or does not exist.
2. There are 7 indeterminate forms:

$$
\frac{0}{0} \quad \pm \frac{\infty}{\infty} \quad \infty-\infty \quad \pm 0 \cdot \infty \quad 1^{\infty} \quad 0^{0} \quad \infty^{0}
$$

(a) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x^{2}-3 x+2}$

$$
\begin{aligned}
& \text { Form } \frac{0}{0} \text { so simplify; } \\
& =\lim _{x \rightarrow 2} \frac{(x+5)(x-2)}{(x-2)(x-1)}=\lim _{x \rightarrow 2} \frac{x+5}{x-1}=7
\end{aligned}
$$

(b) $\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x+5}$

Indeterminate form: $\frac{0}{0}$
Multiply both numerator and denominator by conjugate:
$\lim _{x \rightarrow-3} \frac{\sqrt{x^{2}+7}-4}{x+3} \times \frac{\sqrt{x^{2}+7}+4}{\sqrt{x^{2}+7}+4}$
Simplify:

$$
\begin{aligned}
& =\lim _{x \rightarrow-3} \frac{x^{2}-9}{(x+3)\left(\sqrt{x^{2}+7}+4\right)} \\
& =\lim _{x \rightarrow-3} \frac{(x+3)(x-3)}{(x+3)\left(\sqrt{1} \sqrt{x^{2}+7}+4\right)} \\
& =\lim _{x \rightarrow-3} \frac{x-3}{\sqrt{x^{2}+7}+4} \Longrightarrow
\end{aligned}
$$

$$
\text { Answer }=\lim _{x \rightarrow-3} \frac{x-3}{\sqrt{x^{2}+7}+4}=-\frac{3}{4}
$$

$$
f(x)=\sqrt{x^{2}+7} \text { and } a=-3
$$

Direct Substitute:

$=\frac{0}{10}=0$
(c) $\lim _{x \rightarrow-3} \frac{\sqrt{x^{2}+7}-4}{x+3}$
(d) $\lim _{x \rightarrow 3^{-}} \arctan \left(\frac{1}{3-x}\right)$

Note: $\lim _{x \rightarrow 3^{-}}\left(\frac{1}{3-x}\right)=\infty$
Now
$\lim _{x \rightarrow 3^{-}} \arctan \left(\frac{1}{3-x}\right)$
$=\lim _{u \rightarrow \infty} \arctan (u)=\frac{\pi}{2}$

(e) $\lim _{x \rightarrow-3} \frac{\frac{1}{3}-\frac{1}{x}}{x+3}$

This is of the form $\frac{2 / 3}{0}$ which is ∞.
(f) $\lim _{x \rightarrow-3} \frac{\frac{1}{3}+\frac{1}{x}}{x+3}$

(g) $\lim _{x \rightarrow-\infty} \frac{2 e^{x}+e^{-x}}{3 e^{x}+7 e^{-x}}$

(h) $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x}\right)$

For all $x \neq 0$,
$-\left|x^{3}\right| \leq x^{3} \sin \left(\frac{1}{x}\right) \leq\left|x^{3}\right|$.
Now,
$\underbrace{-\left|x^{3}\right|}_{=f(x)} \leq \underbrace{x^{3} \sin \left(\frac{1}{x}\right)}_{=g(x))} \leq \underbrace{\left|x^{3}\right|}_{=h(x)}$
$\lim _{x \rightarrow 0} f(x)=0$ and $\lim _{x \rightarrow 0} h(x)=0$
By, Squeeze Theorem, $\lim _{x \rightarrow 0} g(x)=0$.
(i) $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}$

$$
\begin{aligned}
& \frac{2-|x|}{2+x}= \begin{cases}\frac{2-(-x)}{2+x} & x \leq 0 \\
\frac{2-x}{2+x} & x>0\end{cases} \\
& \Longrightarrow \\
& \frac{2-|x|}{2+x}= \begin{cases}\frac{2+x}{2+x} & x \leq 0 \\
\frac{2-x}{2+x} & x>0\end{cases} \\
& \begin{array}{l}
\frac{2-|x|}{2+x}
\end{array} \underbrace{x \neq-2 \text { and } x \leq 0}_{\text {Points around } x=-2 \text { are in here. }} \\
& \begin{array}{l}
1 \\
\frac{2-x}{2+x}
\end{array} \\
& \begin{array}{l}
x>0
\end{array} \\
& \underbrace{2+x}_{x \rightarrow-2} f(x) \text { is a limit at the cut off point }
\end{aligned}
$$

Find left and right limits.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x)=1 \text { and } \lim _{x \rightarrow-2^{+}} f(x)=1 \\
& \Longrightarrow \lim _{x \rightarrow-2} f(x)=1
\end{aligned}
$$

3. Find the horizontal asymptotes, if any exist, for the following function:

$$
f(x)=\sqrt{x^{2}+2 x-2}-\sqrt{x^{2}-2}
$$

```
Multiply by conjugate to change the form
lim}\sqrt{}{\mp@subsup{x}{}{2}+2x-2}-\sqrt{}{\mp@subsup{x}{}{2}-2}
\mp@subsup{\operatorname{lim}}{x->\pm\infty}{}\frac{(\sqrt{}{\mp@subsup{x}{}{2}+2x-2}-\sqrt{}{\mp@subsup{x}{}{2}-2})(\sqrt{}{\mp@subsup{x}{}{2}+2x-2}+\sqrt{}{\mp@subsup{x}{}{2}-2})}{\sqrt{}{\mp@subsup{x}{}{2}+2x-2}+\sqrt{}{\mp@subsup{x}{}{2}-2}}=
lim
lim
                                    Multiply by the reciprocal of the
                                    highest power of denominator }\frac{1}{x
```



```
\mp@subsup{\operatorname{lim}}{x->\pm\infty}{}\frac{2x}{\pmx(\sqrt{}{1,+\frac{2}{x}-\frac{2}{\mp@subsup{x}{}{2}}})\pmx\sqrt{}{1-\frac{2}{\mp@subsup{x}{0}{2}}}}=\mp@subsup{\operatorname{lim}}{\bullet\bullet\bullet}{m}\frac{1}{x}=0
\mp@subsup{\operatorname{lim}}{x->-\infty}{}\frac{2}{\pm1\pm1}=\pm1
```

3. Sketch the graph of a function f that satisfies the following properties:

 which satisfies,
4. Sketch the graph of a function f that satisfies the following properties:

$$
\begin{array}{lll}
f(2)=-2 & \lim _{x \rightarrow 2} f(x)=-1 & f(0) \text { DNE } \\
\lim _{x \rightarrow 0} f(x)=e & \lim _{x \rightarrow \infty} f(x)=0 & \lim _{x \rightarrow-\infty} f(x)=0
\end{array}
$$

- Continuity and the Intermediate Value Theorem

- Definition: A function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.
- Identify different types of discontinuities graphically and algebraically:

Removable Discontinuity (hole)	Jump Discontinuity	Infinite Discontinuity
$\lim _{x \rightarrow a} f(x)$ exists, but	$\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$
$\lim _{x \rightarrow a} f(x) \neq f(a)$	both exist, but	or
	$\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$

- Use continuity to evaluate limits. If $f(x)$ is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then $\lim _{x \rightarrow a} f(g(x))=f(b)$
- Use the Intermediate Value Theorem to show the existence of solutions to equations involving continuous functions.

1. Give all the x-values where the function has discontinuities and identify the type of discontinuity.

$$
f(x)=\left\{\begin{array}{ll}
3 x^{2}-2 x-3 & x \leq 0 \\
x-3 & 0<x<4 \\
x^{2}-3 x-3 & x \geq 4
\end{array} \quad g(x)= \begin{cases}\cos (x) & x<0 \\
0 & x=0 \\
x^{2}-1 & 0<x<1 \\
\frac{1}{x-2} & x \geq 1\end{cases}\right.
$$

$$
f(x)= \begin{cases}3 x^{2}-2 x-3 & x \leq 0 \\ x-3 & 0<x<4 \\ x^{2}-3 x-3 & x \geq 4\end{cases}
$$

All pieces of $f(x)$ are continuous inside their domain but the end points have to be checked.

Checking Continuity at $x=0$:

 $\varlimsup_{x \rightarrow 0} 3 x^{2}-2 x-3=-3=\lim _{x \rightarrow 0} x-3$ so f is continuous at $x=0$.$\frac{\text { Checking Continuity at } x=4 \text { : }}{\lim _{x \rightarrow 4} x-3=1=\lim _{x \rightarrow 4} x^{2}-3 x-3}$ so f is continuous at $x=4$.

So f is continuous everywhere.
$g(x)= \begin{cases}\cos (x) & x<0 \\ 0 & x=0 \\ x^{2}-1 & 0<x<1 \\ \frac{1}{x-2} & x \geq 1\end{cases}$
All pieces of $f(x)$ are continuous inside their domain but at $x=2$ and the end points have to be checked:

Checking Continuity at $x=0$:
$\varlimsup_{x \rightarrow 0} \cos (x)=1 \neq \lim _{x \rightarrow 0} x^{2}-1=-1 \neq$ $f(0)=0$. So f is NOT continuous at $x=0$. A jump discontinuity at $x=0$.
$\underline{\text { Checking Continuity at } x=1 \text { : }}$
$\overline{\lim _{x \rightarrow 1} x^{2}-1=0 \neq-1 \lim _{x \rightarrow 1}} \frac{1}{x-2}$ so
f is NOT continuous at $x=4$. Jump discontinuity at $x=1$.

Infinite discontinuous at $x=2$.
2. In 1987 it cost 22 cents to mail a letter first class inside the US and in 1990 it cost 25 cents to mail the same letter. Can we conclude that the cost to mail a letter was 23 cents at some point in time?

The cost function is not continuous so we can not use IVT.
3. If a child's temperature rose from $98.6^{\circ} \mathrm{F}$ to $101.3^{\circ} \mathrm{F}$, was there an instant that the child's temperature was $100^{\circ} F$? (Compare this to the previous problem - what is the difference?)

A child's temperature is continuous and $98.6^{\circ} \mathrm{F}<100^{\circ} \mathrm{F}<101.3^{\circ} \mathrm{F}$ and by mean value theorem, there is a t during that time period that their temperature was $100^{\circ} \mathrm{F}$.
4. Using the Intermediate Value Theorem and bisection, approximate the roots of the function $f(x)=x-x^{3}+1$ accurate to one decimal point.
$f(2)<0$ and $f(1)>0 . f$ is continuous on $[1,2]$. Therefore, we can use the bisection method on that interval.

Interval	Midpoint	$y=$ value for midpoint	Interval Containing the root	Length of the interval
$\left[1^{+}, 2^{-}\right]$	1.5	$-0.875<0$	$[1,1.5]$	$\frac{1}{2}$
$\left[1^{+}, 1.5^{-}\right]$	1.25	$2.01515>0$	$[1.25,1.5]$	$\frac{1}{4}$
$\left[1.25^{+}, 1.5^{-}\right]$	1.375	$-0.22461<0$	$[1.25,1.375]$	$\frac{1}{8}$
$\left[1.25^{+}, 1.375^{-}\right]$	1.3125	$0.05151>0$	$\frac{[1.3125,1.375]}{}$	$\frac{1}{16}$

Accurate to one decimal place is 1.3
5. Does the Intermediate Value Theorem guarantee that $g(x)=\frac{1}{x}$ has a root on the interval $[-1,1]$?

No, $g(x)$ is not continuous on $[-1,1]$.
6. Find the values a and b which make the following function continuous everywhere:

$$
f(x)= \begin{cases}x^{2}-2 x+a & \text { if } x<-2 \\ b & \text { if } x=-2 \\ \frac{1}{x+4} & \text { if } x>-2\end{cases}
$$

$x^{2}-2 x+a$ is continuous everywhere. $\frac{1}{x+4}$ is continuous on all values $x>-2$. So what remains is to check the end points.

Conditions for continuity at $x=-2$:
$\lim _{x \rightarrow-2^{-}} x^{2}-2 x+a=8+a=f(-2)=\lim _{x \rightarrow-2^{+}} \frac{1}{x+4}=\frac{1}{2}$
So $b=\frac{1}{2}$ and $a=-\frac{15}{2}$

- Definition of the Derivative

- Compute derivatives of common functions (polynomials, rational functions, and square roots) using the limit definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Know the typical ways a function can fail to be differentiable: corners, cusps, vertical tangents, and discontinuities.
- Find the equations of tangent lines to curves.

1. Use the limit definition of the derivative in the following problems.
(a) Compute $f^{\prime}(1)$ for the function $f(x)=x^{2}-x+2$.

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}-x+2-2}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{x(x-1)}{x-1}=\lim _{x \rightarrow 1} x=1
\end{aligned}
$$

(b) Compute $f^{\prime}(x)$ for the function $f(x)=\frac{1}{x}$. What is the domain of $f^{\prime}(x)$?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x-1}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} & & \text { Domain of } f^{\prime}(x) \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{x(x+h) h}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}} & & (-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

2. Let $P(t)$ be the population of China (in billions), where t is the number of years since 1965 . What does it mean when $P^{\prime}(30)=0.15$?

The instantaneous rate of change in population in 1995 was 0.15 billion additional people per year. (The figure 0.15 may not be accurate.)
3. The total cost of producing x feet of rope is $C(x)$ dollars.
(a) What are the units of $C^{\prime}(x)$?

$$
C^{\prime}(a)=\lim _{x \rightarrow a} \frac{C(x)-C(a)}{x-a} \frac{\text { dollars }}{\mathrm{ft}}
$$

(b) What is the practical meaning of $C^{\prime}(100)=1.4$?
$C^{\prime}(100)=$ 1.4 The instantaneous change in cost in producing rope after 100 ft is $\$ 1.4$ per feet.
(c) Suppose $C(100)=800$ and $C^{\prime}(100)=1.4$. Estimate $C(110)$.

$$
\begin{aligned}
& C(10) \approx C(100)+10 C^{\prime}(100)=800+ \\
& 10(1.4)=\$ 814
\end{aligned}
$$

4. Identify the values where the function graphed below is not differentiable. Classify the reason why f is not differentiable at each value.

- Current List of Derivative Rules

$$
\begin{array}{ll}
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) & \frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \quad \text { (product rule) } \\
\frac{d}{d x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x) & \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \quad \text { (quotient rule) } \\
\frac{d}{d x}(c f(x))=c f^{\prime}(x) & \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x) \quad \text { (chain rule) } \\
\frac{d}{d x}(c)=0 & \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \text { (power rule) } \\
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln (a) & \frac{d}{d x}\left(e^{x}\right)=e^{x}
\end{array}
$$

1. Use the table to compute the following derivatives. Be aware that you may not have enough information to evaluate a derivative.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	1	4	0	-1
4	3	3	-1	0

(a) If $h(x)=f\left(x^{2}\right)$, find $h^{\prime}(2)$.

$$
h^{\prime}(x)=2 x f^{\prime}\left(x^{2}\right) \quad h^{\prime}(2)=2(2) f^{\prime}(4)=4(3)=12
$$

(b) If $h(x)=x^{2} f(x)$, find $h^{\prime}(4)$.

$$
h^{\prime}(x)=2 x f(x)+x^{2} f^{\prime}(x) \quad h^{\prime}(4)=8(3)+16(3)=72
$$

(c) If $h(x)=f(x) g(x)$, find $h^{\prime}(2)$.

$$
h^{\prime}(x)=f^{\prime}(x) g(x)=f(x) g^{\prime}(x) \quad h^{\prime}(2)=(4)(0)+(1)(-1)=-1
$$

(d) If $h(x)=\frac{f(x)}{g(x)}$, find $h^{\prime}(4)$.

$$
h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \quad h^{\prime}(4)=\frac{(-1)(2)-(0)(3)}{(-1)^{2}}=-3
$$

(e) If $h(x)=\frac{f(x)-x}{g(x-1)}$, find $h^{\prime}(2)$.
$h^{\prime}(x)=\frac{g(x-1)\left(f^{\prime}(x)-1\right)-g^{\prime}(x-1)(f(x)-x)}{(g(x-1))^{2}} \quad h^{\prime}(2)=\frac{g(2-1)\left(f^{\prime}(2)-1\right)-g^{\prime}(2-1)(f(2)-2)}{(g(2-1))^{2}}$
Can not be done since $g^{\prime}(1)$ and $g(1)$ are not given.
2. Find an equation for the tangent line to the curve $y=\sqrt{e^{x}+8}$ at $x=0$.

$$
\begin{array}{lll}
f(x)=\sqrt{e^{x}+8} & f(0)=3 & y=1 / 6 x+3 \\
f^{\prime}(x)=\frac{e^{x}}{2 \sqrt{e^{x}+8}} & f^{\prime}(0)=1 / 6 & \text { Slope }
\end{array}
$$

3. Differentiate the following functions and simplify the results.
(a) $f(x)=x^{3}-2 x^{\pi}-\pi^{x}-x^{-1}$

$$
\begin{aligned}
\text { (b) } g(x) & =\frac{x^{3}-x+2}{x+1} \\
g^{\prime}(x) & =\frac{(x+1)\left(3 x^{2}-1\right)-\left(x^{3}-x+2\right)(1)}{(x+1)^{2}} \\
& =\frac{2 x^{3}+3 x^{2}-3}{(x+1)^{2}}
\end{aligned}
$$

Quotient Rule

$$
f^{\prime}(x)=3 x^{2}-2 \pi x^{\pi-1}-\pi^{x} \ln (\pi)+x^{-2}
$$

Power
Rule

Product
(c) $h(x)=\sqrt{x}\left(x^{3}-1\right)$
(d) $r(x)=e^{2 x^{2}-6 x+1}$

Chain
Rule
Rule

$$
\begin{aligned}
& h^{\prime}(x)=\frac{1}{2 \sqrt{x}}\left(x^{3}-1\right)+\sqrt{x} \\
& \begin{array}{l}
\text { Quotient } \\
\text { then Chain } \\
\text { Rules }
\end{array} \\
& \text { (e) } s(t)=\frac{t}{\sqrt{t^{2}+1}}
\end{aligned}
$$

$$
r^{\prime}(x)=(4 x-6) e^{2 x^{2}-6 x+1}
$$

$$
s^{\prime}(t)=\frac{\sqrt{z^{2}+1}(1)-t \frac{2 t}{2 \sqrt{t^{2}+1}}}{t^{2}+1}
$$

$$
=\frac{1}{\left(z^{2}+1\right)^{3 / 2}}
$$

$$
\begin{aligned}
& \text { (f) } v(t)=\left(t^{4}-1\right)^{3}\left(t^{3}+1\right)^{-2} \\
& V^{\prime}(t)=3\left(t^{4}-1\right)^{2}\left(4 t^{3}\right)\left(t^{3}+1\right)^{-2}+\left(t^{4}-1\right)^{3}(-2)\left(t^{3}+1\right)^{-3}\left(3 t^{2}\right) \\
& =\left(t^{4}-1\right)^{2}\left(t^{3}+1\right)^{-3}\left[12 t^{3}\left(t^{3}+1\right)-6 t^{2}\left(t^{4}-1\right)\right] \\
& =\frac{6 t^{2}\left(t^{4}-1\right)^{2}\left(t^{4}+2 t+1\right)}{\left(t^{3}+1\right)^{3}} \quad \begin{array}{l}
\text { Prodoct then 2 } \\
\text { Chain Rules }
\end{array}
\end{aligned}
$$

Chain then
(g) $S(z)=\sqrt{\frac{z-7}{z+7}}$

Quotient Rules

$$
\begin{aligned}
S^{\prime}(z) & =1 / 2\left(\frac{z-7}{z+7}\right)^{-1 / 2} \frac{(z+7) \% z(z-7)-(z-7) d x(z+7)}{(z+7)^{2}} \\
& =\frac{1}{2}\left(\frac{z+7}{z-7}\right)^{+1 / 2} \frac{14}{(z+7)^{2}}=\frac{7}{\sqrt{z-7} \sqrt{z+7}}
\end{aligned}
$$

4. Find a polynomial P of degree 2 such that $P(2)=5, P^{\prime}(2)=3$, and $P^{\prime \prime}(2)=2$.

$$
\begin{aligned}
& \text { find } \\
& a, b, c \\
& P^{\prime}(x)=2 a x+b \\
& P^{\prime \prime}(x)=2 a \\
& y=x^{2}-x+3
\end{aligned} \quad \begin{aligned}
P^{\prime \prime}(2)=2 & \Rightarrow a=1 \\
P^{\prime}(2)=3 & \Rightarrow 3=4+b \\
& \Rightarrow b=-1 \\
P(2)=5 & \Rightarrow 5=4-2+c \\
& \Rightarrow c=3
\end{aligned}
$$

5. The functions

$$
y=x^{2}+a x+b \quad y=c x-x^{2}
$$

share a tangent line at the point $(1,0)$. Find a, b, and c.
If the functions share a tangent line at $(1,0)$
then (i) $(1,0)$ lies on the curve of $y=x^{2}+a x+b$

$$
\Rightarrow 0=1+a+b
$$

(ii) $(1,0)$ lies on the curve of $y=c x-x^{2}$

$$
\Rightarrow O=c-1 \Rightarrow c=1
$$

(iii) The derivatives at $x=1$ both are the slope of the tangent lines:

$$
\begin{aligned}
& \Rightarrow d /\left.d x\left(x^{2}+a x+b\right)\right|_{x=1}=d /\left.d x\left(c x-x^{2}\right)\right|_{x=1} \\
& \Rightarrow 2 x+\left.a\right|_{x=1}=c-\left.2 x\right|_{x=1} \\
& \Rightarrow 2+a=c-2 \Rightarrow a=c-4=-3
\end{aligned}
$$

and $b=-1-a=2$
6. Find the points on the curve

$$
y=2 x^{3}+3 x^{2}-12 x+3
$$

where the tangent line is horizontal.

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}+6 x-12 \\
& =6\left(x^{2}+x-2\right) \\
& =6(x+2)(x-1)
\end{aligned}
$$

Horizontal tangent lines occur when $f(x)=0$:
$(1, f(1))=(1,4) \quad(-2, f(-2))=(-2,23)$

- Implicit Differentiation

- The basic idea: If two expressions are equal, then so are their derivatives.
- Implicit differentiation is an application of the chain rule.
- Given an implicit equation involving x and y, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.
- Given an implicit equation involving x and y, find the equation of the tangent line at a point (x_{0}, y_{0}) on the curve.
- Implicit differentiation was used to find the derivative of $\ln (x)$ and $\log _{a}(x)$.
- Whenever the variable being differentiated differs from the variable that we are differentiating with respect to, a new derivative term is produced. For example, $\frac{d}{d z}\left(r^{3}\right)=3 r^{2} \frac{d r}{d z}$.

1. Find $\frac{d y}{d x}, \frac{d x}{d y}$ and $\frac{d x}{d t}$ for each equation:
(a) $x y+x^{2} y^{2}=6$

$$
\begin{array}{ll}
\frac{d y}{d x}: \underbrace{y+x \frac{d y}{d x}}_{\text {Product rule }}+\underbrace{2 x y^{2}+2 x^{2} y \frac{d y}{d x}}_{\text {Product rule }}=0 & \frac{d x}{d y}: \sqrt{\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}=-\frac{x+2 x^{2} y}{y+2 x y^{2}}} \\
\frac{\text { Regroup: }}{y+2 x y^{2}=-\left(x+2 x^{2} y\right) \frac{d y}{d x}} & \frac{d x}{d t}: y \frac{d x}{d t}+x \frac{d y}{d t}+2 x y^{2} \frac{d x}{d t}+2 x^{2} y \frac{d y}{d t}=0 \\
\frac{d y}{d x}=-\frac{y+2 x y^{2}}{x+2 x^{2} y} & \frac{d x}{d t}=-\frac{x \frac{d y}{d t}+2 x^{2} y \frac{d y}{d t}}{y+2 x y^{2}}
\end{array}
$$

(b) $e^{x y}=\sqrt[3]{x y^{2}}$

$$
\begin{array}{ll}
\frac{d y}{d x}: \underbrace{e^{x y}\left(y+x \frac{d y}{d x}\right)}_{\text {Product rule }}=\underbrace{\frac{1}{3}\left(x y^{2}\right)^{-2 / 3}\left(x(2 y) \frac{d y}{d x}+y^{2}\right)}_{\text {Chain rule then product rule }} & \frac{d x}{d y}: \\
\frac{d y}{d x}=\frac{y e^{x y}-\frac{1}{3}\left(x y^{2}\right)^{-2 / 3} y^{2}}{-x e^{x y}+\frac{2 x y}{3}\left(x y^{2}\right)^{-2 / 3}} & \frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}=\frac{-x e^{x y}+\frac{2 x y}{3}\left(x y^{2}\right)^{-2 / 3}}{y e^{x y}-\frac{1}{3}\left(x y^{2}\right)^{-2 / 3} y^{2}} \\
\frac{d y}{d t}=\frac{3\left(x y^{2}\right)^{2 / 3} y e^{x y}-y^{2}}{-3\left(x y^{2}\right)^{2 / 3} x e^{x y}+2 x y} & \underbrace{e^{x y}\left(y \frac{d x}{d t}+x \frac{d y}{d t}\right)}_{\text {Product rule }}=\underbrace{\frac{1}{3}\left(x y^{2}\right)^{-2 / 3}\left(x(2 y) \frac{d y}{d x}+y^{2} \frac{d x}{d t}\right)}_{\text {Chain rule then product rule }} \\
& \frac{d x}{d t}=\frac{-x e^{x y}+\frac{2 x y}{3}\left(x y^{2}\right)^{-2 / 3}}{y e^{x y}-\frac{1}{3}\left(x y^{2}\right)^{-2 / 3} y^{2}}\left(\frac{d y}{d t}\right)
\end{array}
$$

