Midterm Exam I - Review MATH 125 - Spring 2022

Sections 2.1-2.5, 2.7, 2.8, 3.1-3.3, 3.7, 3.8 Midterm Exam 1: Tuesday 3/1, 5:50-7:50 pm in Strong 330 and Wescoe 3140

The following is a list of important concepts that will be tested on Midterm Exam 1. This is not a complete list of the material that you should know for the course, but it is a good indication of what will be emphasized on the exam. A thorough understanding of all of the following concepts will help you perform well on the exam. Some places to find problems on these topics are the following: in the book, in the slides, in the homework, on quizzes, and WebAssign.

• Average and Instantaneous Rates of Change

Total change	Average change	Instantaneous change	
Total change of $f(x)$	Average rate of change	Instantaneous rate of	
on $[a, a+h]$	of $f(x)$ on $[a, a+h]$	change of $f(x)$ at a	
Change in y	Difference Quotient	Derivative	
f(a+h) - f(a)	$\frac{f(a+h) - f(a)}{h}$	$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$	
Change in Position	Average Velocity	(Instantaneous) Velocity	
	Slope of secant line	Slope of tangent line	

1. A ball is thrown into the air. The height (in feet) of the ball at a time t (in seconds) is given by

$$p(t) = -16t^2 + 10t + 7$$

- (a) Find the average velocity of the ball between times t = 1 and t = 2.
- (b) Find the average velocity of the ball between times t = 1 and t = h.
- (c) Find the velocity of the ball at time t = 1.

(a)
$$\frac{p(2) - p(1)}{2 - 1} = \frac{-37 - 1}{1} = -38 \, ft/s$$
 (b) $\frac{p(h) - p(1)}{h - 1} = \frac{-16h^2 + 10h + 6}{h - 1} \, ft/s$
(c) $v(1) = s'(1) = \lim_{x \to 1} \frac{p(x) - p(1)}{h - 1} = \lim_{x \to 1} \frac{-16x^2 + 10x + 6}{x - 1}$
 $= \lim_{x \to 1} \frac{-2(x - 1)(8x + 3)}{x - 1} = -2(8 + 3) = -22 \, ft/s$
Alternatively, by derivative rules $v(t) = -32t + 10$ and $v(1) = 22 ft/sec$

2. Find the secant line to the function $f(x) = x^3 - 1$ on the interval [-2, 3].

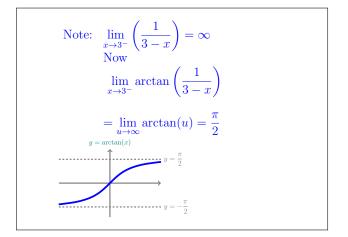
Two points (-2, f(-2)) = (-2, -9) and (3, f(3)) = (3, 26). Slope: $\frac{f(3) - f(-2)}{3 - (-2)} = \frac{26 - -(-9)}{5} = \frac{35}{5} = 7$ Secant line: $y - (-9) = 7(x - (-2)) \implies y = 7x + 5$

• Limits of Functions

- Understand the definitions of limit; this includes limits from the left, limits from the right, and infinite limits.
- Find vertical asymptotes for functions.
- Sketch a function satisfying a list of limit properties.
- Compute limits of various functions, including limits from the left and right both graphically and algebraically. Use the limit laws and limit calculation techniques: direct substitution, simplification, conjugation, and the Squeeze Theorem.
- Compute limits of piecewise defined functions using limits from the left and right.
- Compute limits at $\pm \infty$. Keep in mind the idea of multiplying through by 1 over the dominant term in the denominator. Find horizontal asymptotes using limits as $x \to \infty$ and $x \to -\infty$.
- 1. Compute the following limits if they exist. If the limit is infinite, specify if it is ∞ , $-\infty$, or does not exist.
- 2. There are 7 indeterminate forms:

$$\frac{0}{0} \pm \frac{\infty}{\infty} \quad \infty - \infty \quad \pm 0 \cdot \infty \quad 1^{\infty} \quad 0^{0} \quad \infty^{0}$$
(a)
$$\lim_{x \to 2} \frac{x^{2} + 3x - 10}{x^{2} - 3x + 2}$$
Indeterminate form: $\frac{0}{0}$
Multiply both numerator and denominator by conjugate:

$$\lim_{x \to 2} \frac{\sqrt{x^{2} + 7} - 4}{(x - 2)(x - 2)^{2}} = \lim_{x \to 2} \frac{x + 5}{x - 1} = 7$$
(b)
$$\lim_{x \to 5} \frac{x^{2} - 6x + 5}{x + 5}$$
(b)
$$\lim_{x \to 5} \frac{x^{2} - 6x + 5}{x + 5}$$
(c)
$$\lim_{x \to 4} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(d)
$$\lim_{x \to 3^{-}} \arctan\left(\frac{1}{3 - x}\right)$$
(e)
$$\lim_{x \to 4^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(f)
$$\lim_{x \to 4^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(g)
$$\lim_{x \to 4^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 3^{-}} \arctan\left(\frac{1}{3 - x}\right)$$
(h)
$$\lim_{x \to 3^{-}} \frac{\sqrt{x^{2} + 7} - 4}{x + 3}$$
(h)
$$\lim_{x \to 3^{-}} \arctan\left(\frac{1}{3 - x}\right)$$



(e)
$$\lim_{x \to -3} \frac{\frac{1}{3} - \frac{1}{x}}{x+3}$$

This is of the form $\frac{2/3}{0}$ which is ∞ .

(f)
$$\lim_{x \to -3} \frac{\frac{1}{3} + \frac{1}{x}}{x+3}$$

We use Simplification on this limit of

$$(s) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 3e^{x}} = \lim_{x \to -3} \frac{1}{3e^{x} + 3e^{x}} + \frac{1}{3e^{x}} = \lim_{x \to -3} \frac{1}{3e^{x} + 3e^{x}} + \frac{1}{3e^{x}} + \frac{1}{3e^{x}} + \frac{1}{3e^{x}} + \frac{1}{3e^{x}} = \lim_{x \to -3} \frac{1}{3e^{x} + 7e^{-x}} = \lim_{x \to -3} \frac{1}{3e^{x} + 7e^{-x}} = \frac{1}{9}$$

$$(s) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{2e^{x} + e^{-x}}{3e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}}$$

$$(g) \lim_{x \to -\infty} \frac{1}{9e^{x} + 7e^{-x}}}$$

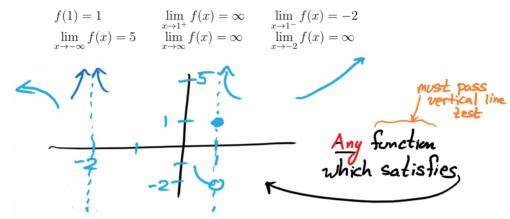
$$(g) \lim_{x \to -\infty} \frac{1$$

3. Find the horizontal asymptotes, if any exist, for the following function:

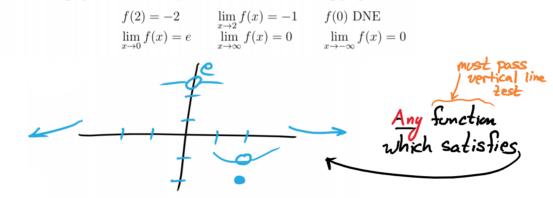
$$f(x) = \sqrt{x^2 + 2x - 2} - \sqrt{x^2 - 2}$$

 $\lim_{x \to \infty} f(x) \text{ is of the indeterminate form: } \boxed{\infty - \infty}$

3. Sketch the graph of a function f that satisfies the following properties:



4. Sketch the graph of a function f that satisfies the following properties:



• Continuity and the Intermediate Value Theorem

- Definition: A function f(x) is continuous at x = a if $\lim f(x) = f(a)$.

- Identify different types of discontinuities graphically and algebraically:

Removable Discontinuity (hole)	Jump Discontinuity	Infinite Discontinuity
$\lim_{x \to a} f(x) \text{ exists, but}$ $\lim_{x \to a} f(x) \neq f(a)$	$\lim_{x \to a^{-}} f(x) \text{ and } \lim_{x \to a^{-}} f(x)$ both exist, but	$\lim_{x \to a^-} f(x) = \pm \infty$ or
	$\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$	$\lim_{x \to a^+} f(x) = \pm \infty$

- Use continuity to evaluate limits. If f(x) is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$
- Use the Intermediate Value Theorem to show the existence of solutions to equations involving continuous functions.
- 1. Give all the x-values where the function has discontinuities and identify the type of discontinuity.

$$f(x) = \begin{cases} 3x^2 - 2x - 3 & x \le 0\\ x - 3 & 0 < x < 4\\ x^2 - 3x - 3 & x \ge 4 \end{cases} \qquad g(x) = \begin{cases} \cos(x) & x < 0\\ 0 & x = 0\\ x^2 - 1 & 0 < x < 1\\ \frac{1}{x - 2} & x \ge 1 \end{cases}$$

$$f(x) = \begin{cases} 3x^2 - 2x - 3 & x \le 0\\ x - 3 & 0 < x < 4\\ x^2 - 3x - 3 & x \ge 4 \end{cases} \qquad g(x) = \begin{cases} \cos(x) & x < 0\\ 0 & x = 0\\ x^2 - 1 & 0 < x < 1\\ \frac{1}{x - 2} & x \ge 1 \end{cases}$$

All pieces of f(x) are continuous inside their domain but the end points have to be checked.

Checking Continuity at x = 0: $\lim_{x \to 0} 3x^2 - 2x - 3 = -3 = \lim_{x \to 0} x - 3 \text{ so } f$ is continuous at x = 0.

Checking Continuity at x = 4: $\lim_{x \to 4} x - 3 = 1 = \lim_{x \to 4} x^2 - 3x - 3 \text{ so } f \text{ is}$ continuous at x = 4.

So f is continuous everywhere.

All pieces of f(x) are continuous inside their domain but at x = 2 and the end points have to be checked:

Checking Continuity at x = 0: $\lim_{x \to 0} \cos(x) = 1 \neq \lim_{x \to 0} x^2 - 1 = -1 \neq f(0) = 0.$ So f is **NOT** continuous at x = 0. <u>A jump discontinuity at x = 0.</u>

Checking Continuity at x = 1: $\lim_{x \to 1} x^2 - 1 = 0 \neq -1 \lim_{x \to 1} \frac{1}{x - 2} \text{ so}$ *f* is **NOT** continuous at x = 4. Jump discontinuity at x = 1.

Infinite discontinuous at x = 2.

2. In 1987 it cost 22 cents to mail a letter first class inside the US and in 1990 it cost 25 cents to mail the same letter. Can we conclude that the cost to mail a letter was 23 cents at some point in time?

The cost function is not continuous so we can not use IVT.

3. If a child's temperature rose from $98.6^{\circ}F$ to $101.3^{\circ}F$, was there an instant that the child's temperature was $100^{\circ}F$? (Compare this to the previous problem — what is the difference?)

A child's temperature is continuous and $98.6^{\circ}F < 100^{\circ}F < 101.3^{\circ}F$ and by mean value theorem, there is a t during that time period that their temperature was $100^{\circ}F$.

4. Using the Intermediate Value Theorem and bisection, approximate the roots of the function $f(x) = x - x^3 + 1$ accurate to one decimal point.

Interval	Midpoint	y=value for midpoint	Interval Containing the root	Length of the interval
$[1^+, 2^-]$	1.5	-0.875< 0	[1, 1.5]	$\frac{1}{2}$
$[1^+, 1.5^-]$	1.25	2.01515> 0	[1.25, 1.5]	$\frac{1}{4}$
$[1.25^+, 1.5^-]$	1.375	-0.22461< 0	[1.25, 1.375]	$\frac{1}{8}$
$[1.25^+, 1.375^-]$	1.3125	0.05151> 0	[1.3125, 1.375] The interval	$\frac{1}{16}$

5. Does the Intermediate Value Theorem guarantee that $g(x) = \frac{1}{x}$ has a root on the interval [-1,1]?

No, g(x) is not continuous on [-1, 1].

6. Find the values a and b which make the following function continuous everywhere:

$$f(x) = \begin{cases} x^2 - 2x + a & \text{if } x < -2\\ b & \text{if } x = -2\\ \frac{1}{x+4} & \text{if } x > -2 \end{cases}$$

 $x^2 - 2x + a$ is continuous everywhere. $\frac{1}{x+4}$ is continuous on all values x > -2. So what remains is to check the end points.

Conditions for continuity at x = -2:

$$\lim_{x \to -2^{-}} x^{2} - 2x + a = 8 + a = f(-2) = \lim_{x \to -2^{+}} \frac{1}{x+4} = \frac{1}{2}$$

So $b = \frac{1}{2}$ and $a = -\frac{15}{2}$

• Definition of the Derivative

 Compute derivatives of common functions (polynomials, rational functions, and square roots) using the limit definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Know the typical ways a function can fail to be differentiable: corners, cusps, vertical tangents, and discontinuities.
- Find the equations of tangent lines to curves.
- 1. Use the limit definition of the derivative in the following problems.
 - (a) Compute f'(1) for the function $f(x) = x^2 x + 2$.

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - x + 2 - 2}{x - 1}$$
$$= \lim_{x \to 1} \frac{x(x - 1)}{x - 1} = \lim_{x \to 1} x = \boxed{1}$$

(b) Compute f'(x) for the function $f(x) = \frac{1}{x}$. What is the domain of f'(x)?

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x-1} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$
 Domain of $f'(x)$
$$= \lim_{h \to 0} \frac{x - (x+h)}{x(x+h)h} = \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}$$
 $(-\infty, 0) \cup (0, \infty)$

2. Let P(t) be the population of China (in billions), where t is the number of years since 1965. What does it mean when P'(30) = 0.15?

The instantaneous rate of change in population in 1995 was 0.15 billion additional people per year. (The figure 0.15 may not be accurate.)

- 3. The total cost of producing x feet of rope is C(x) dollars.
 - (a) What are the units of C'(x)?

 $C'(a) = \lim_{x \to a} \frac{C(x) - C(a)}{x - a} \left[\frac{\text{dollars}}{\text{ft}} \right]$

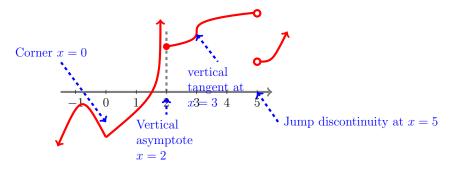
(b) What is the practical meaning of C'(100) = 1.4?

C'(100) = 1.4 The instantaneous change in cost in producing rope after 100 ft is \$1.4 per feet.

(c) Suppose C(100) = 800 and C'(100) = 1.4. Estimate C(110).

 $C(10) \approx C(100) + 10C'(100) = 800 + 10(1.4) = \814

4. Identify the values where the function graphed below is **not** differentiable. Classify the reason why f is not differentiable at each value.



• Current List of Derivative Rules

$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$	$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) \text{(product rule)}$
$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$	$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2} (\text{quotient rule})$
$\frac{d}{dx}(c f(x)) = cf'(x)$	$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ (chain rule)
$\frac{d}{dx}(c) = 0$	$\frac{d}{dx}(x^n) = n x^{n-1}$ (power rule)
$\frac{d}{dx}(a^x) = a^x \ln(a)$	$\frac{d}{dx}(e^x) = e^x$

1. Use the table to compute the following derivatives. Be aware that you may not have enough information to evaluate a derivative.

x	f(x)	f'(x)	g(x)	g'(x)
2	1	4	0	-1
4	3	3	-1	0

(a) If
$$h(x) = f(x^2)$$
, find $h'(2)$.

$$h'(x) = 2xf'(x^2)$$
 $h'(2) = 2(2)f'(4) = 4(3) = 12$

(b) If
$$h(x) = x^2 f(x)$$
, find $h'(4)$.

$$h'(x) = 2xf(x) + x^2f'(x)$$
 $h'(4) = 8(3) + 16(3) = 72$

(c) If h(x) = f(x)g(x), find h'(2).

$$h'(x) = f'(x)g(x) = f(x)g'(x)$$
 $h'(2) = (4)(0) + (1)(-1) = -1$

(d) If
$$h(x) = \frac{f(x)}{g(x)}$$
, find $h'(4)$.

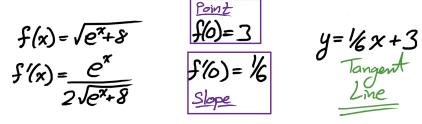
$$h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$h'(4) = \frac{(-1)(2) - (0)(3)}{(-1)^2} = -3$$

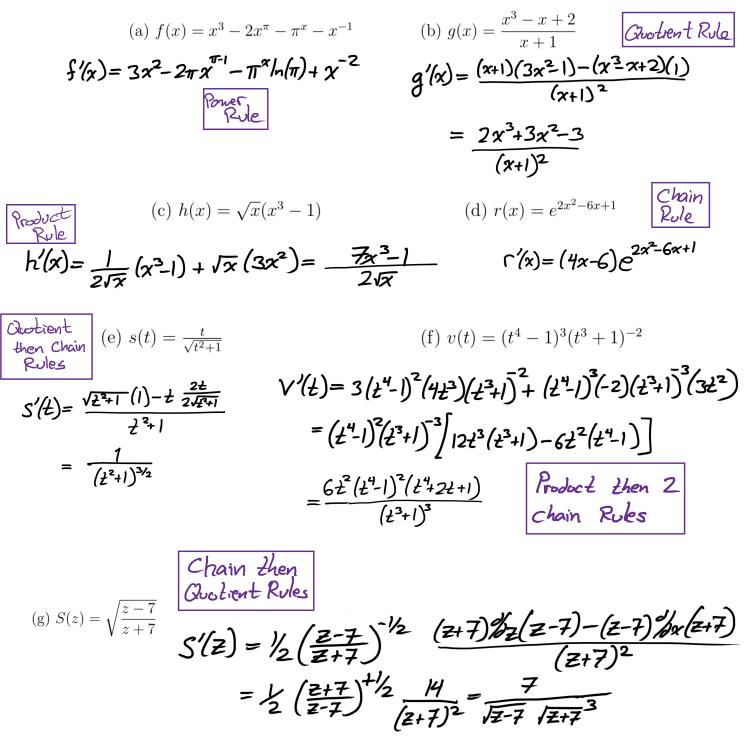
(e) If
$$h(x) = \frac{f(x) - x}{g(x - 1)}$$
, find $h'(2)$.

$$h'(x) = \frac{g(x-1)(f'(x)-1) - g'(x-1)(f(x)-x)}{(g(x-1))^2} \qquad h'(2) = \frac{g(2-1)(f'(2)-1) - g'(2-1)(f(2)-2)}{(g(2-1))^2}$$
Can not be done since $g'(1)$ and $g(1)$ are not given.

2. Find an equation for the tangent line to the curve $y = \sqrt{e^x + 8}$ at x = 0.



3. Differentiate the following functions and simplify the results.



(h)
$$V(x) = \sqrt{x + \sqrt{2x + \sqrt{3x}}} \quad \sqrt{2}(x) = \frac{1}{2} \left(x + \sqrt{2x + \sqrt{3x}}\right)^{1/2} \left(1 + \frac{1}{2} \left(2x + \sqrt{3x}\right)^{1/2} \left(2 + \frac{1}{2} \left(3x\right)^{2}, 3\right)$$

derivative deriv

4. Find a polynomial P of degree 2 such that P(2) = 5, P'(2) = 3, and P''(2) = 2.

find
$$P(x) = ax^2 + bx + c$$
 $P''(2) = 2 \Rightarrow a = 1$
a,b,c $P'(x) = 2ax + b$ $P'(2) = 3 \Rightarrow 3 = 4 + b$
 $P''(x) = 2a$ $\Rightarrow b = -1$
 $P(2) = 5 \Rightarrow 5 = 4 - 2 + c$
 $Y = x^2 - x + 3$ $\Rightarrow c = 3$

5. The functions

$$y = x^2 + ax + b \qquad y = cx - x^2$$

share a tangent line at the point (1,0). Find a, b, and c.

If the functions shore a tangent line at (1,0)
then (i) (1,0) lies on the curve of
$$y = x^{2} + ax + b$$

 $\Rightarrow O = 1 + a + b$
(ii) (1,0) lies on the curve of $y = cx - x^{2}$
 $\Rightarrow O = c - 1 \Rightarrow c = 1$
(iii) The derivatives at $x = 1$ both are the
slope of the tangent lines:
 $\Rightarrow d/x (x^{2} + ax + b)|_{x=1} = d/x (cx - x^{2})|_{x=1}$
 $\Rightarrow 2x + a|_{x=1} = c - 2x|_{x=1}$
 $\Rightarrow 2 + a = c - 2 \Rightarrow a = c - 4 = -3$
and $b = -1 - a = 2$

6. Find the points on the curve

$$y = 2x^3 + 3x^2 - 12x + 3$$

where the tangent line is horizontal.

$$\begin{aligned} f'(x) &= 6x^2 + 6x - 12 \\ &= 6(x^2 + x - 2) \\ &= 6(x + 2)(x - 1) \end{aligned} \\ \end{aligned}$$
 Horizontal tangent lines occur when $f(x) = 0$:
 $(1, f(1)) = (1, 4) \qquad (-2, f(-2)) = (-2, 23) \end{aligned}$

• Implicit Differentiation

- The basic idea: If two expressions are equal, then so are their derivatives.
- Implicit differentiation is an application of the chain rule.
- Given an implicit equation involving x and y, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of x and y.
- Given an implicit equation involving x and y, find the equation of the tangent line at a point (x_0, y_0) on the curve.
- Implicit differentiation was used to find the derivative of $\ln(x)$ and $\log_a(x)$.
- Whenever the variable being differentiated differs from the variable that we are differentiating with respect to, a new derivative term is produced. For example, $\frac{d}{dz}(r^3) = 3r^2 \frac{dr}{dz}$.

1. Find
$$\frac{dy}{dx}$$
, $\frac{dx}{dy}$ and $\frac{dx}{dt}$ for each equation:
(a) $xy + x^2y^2 = 6$

(b)
$$e^{xy} = \sqrt[3]{xy^2}$$

$$\frac{dy}{dx} : \underbrace{e^{xy}(y + x\frac{dy}{dx})}_{\text{Product rule}} = \underbrace{\frac{1}{3}(xy^2)^{-2/3}\left(x(2y)\frac{dy}{dx} + y^2\right)}_{\text{Chain rule then product rule}} \qquad \frac{dx}{dy} : \begin{bmatrix} \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{-xe^{xy} + \frac{2xy}{3}(xy^2)^{-2/3}y^2}{ye^{xy} - \frac{1}{3}(xy^2)^{-2/3}y^2} \\ \frac{dy}{dx} = \frac{ye^{xy} - \frac{1}{3}(xy^2)^{-2/3}y^2}{-xe^{xy} + \frac{2xy}{3}(xy^2)^{-2/3}} \\ \frac{dy}{dx} = \frac{3(xy^2)^{2/3}ye^{xy} - y^2}{-3(xy^2)^{2/3}xe^{xy} + 2xy} \\ \frac{dy}{dx} = \frac{3(xy^2)^{2/3}ye^{xy} - y^2}{-3(xy^2)^{2/3}xe^{xy} + 2xy} \\ \frac{dx}{dt} = \frac{-xe^{xy} + \frac{2xy}{3}(xy^2)^{-2/3}\left(x(2y)\frac{dy}{dx} + y^2\frac{dx}{dt}\right)}{ye^{xy} - \frac{1}{3}(xy^2)^{-2/3}y^2} \left(\frac{dy}{dt}\right)$$